Мутации генов семейства RAS
Постоянная активация сигнального каскада рецептора эпидермального фактора роста (EGFR) является одной из ведущих причин опухолевой трансформации и прогрессии.
Причинами подобной активации могут быть:
- Увеличение количества молекул рецептора на мембране клеток.
- Мутации в структуре рецептора, позволяющие ему генерировать сигнал без участия лиганда.
- Мутации других генов-участников каскада, способных активировать его вне зависимости от статуса EGFR.
Для колоректального рака характерны 1 и 3 пути активации.
Блокада сигнального каскада EGFR с помощью моноклональных антител, связывающихся с рецептором, показала высокую клиническую эффективность при целом ряде опухолей, в том числе при колоректальном раке. Однако использование этих препаратов в неселектированной группе больных приводило к ответу на лечение лишь у 25% пациентов.
Первоначальный молекулярный анализ образцов пациентов, участвовавших в исследованиях OPUS и CRYSTAL, показал, что существенную роль в резистентности опухоли к терапии моноклональными антителами играют мутации гена KRAS, одного из участников внутриклеточной части сигнального каскада EGFR.
Однако дальнейшие исследования показали, что не меньшее значение в определении полноты противоопухолевого ответа играют и другие участники сигнального пути, начинающегося с рецептора EGFR: гены RAS-RAF-MEK-ERK-МАРК.
Сигнальный путь RAS
В RAS-зависимом сигнальном пути ключевую роль играют белки семейства RAS. Фиксированные на внутренней стороне клеточной мембраны, белки RAS являются первыми членами каскада киназ, которые приводят к активации сигнальных путей и транскрипции генов, регулирующих дифференцировку и пролиферацию клетки.
Роль белка RAS в сигнальном пути EGFR
Семейство генов RAS (Retrovirus Associated DNA Sequences) включает 3 гена: KRAS, HRAS, NRAS. Первые два гена получили название от своих гомологов, выделенных из линий вирусов мышиной саркомы Kirsten и Harvey, последний был идентифицирован в клеточной линии нейробластомы.
Три гена кодируют четыре варианта протеинов – два типа KRAS, А и В (наиболее часто распространенный), и по одному типу HRAS и NRAS.4 Все они относятся к белкам, связывающим энергетическую молекулу ГТФ. RAS-белки могут существовать в двух формах: неактивной, GDP- и активной, GTP-связанной. Благодаря собственной GTP-азной активности, а также под действием факторов обмена (Sos и др.
), белок RAS циклически переходит из GTP-связанной активной формы в GDP-связанную неактивную и обратно.
Нормальный RAS находится преимущественно в неактивной, GDP-связанной форме. Активация RAS регулируется рецепторной тирозинкиназой EGFR. После связывания рецепторной внеклеточной части тирозинкиназы с фактором роста и ее димеризации происходит взаимное фосфорилирование ее внутриклеточных доменов.
Фосфорилирование создает активную конформацию киназы. Образование активного комплекса RAS-GTP происходит в присутствии активирующего GTP-азу белка GAP, в сотни раз ускоряющего гидролиз. После гидролитического превращения GTP в GDP RAS снова инактивируется. Сигнал прерывается.
Чтобы воспринять новый сигнал, если он еще существует вне клетки, цикл реактивации должен быть повторен.
Таким образом, каскадная последовательность реакций сигнального пути RAS действует как включатель, определяющий регуляцию генной экспрессии, требующуюся для реализации деления или дифференцировки клетки.
Нарушение систем передачи сигнала и канцерогенез
RAS-белки часто упоминают как протоонкогенные продукты: их постоянная активация ведет к злокачественному перерождению клеток. Характерный механизм перерождения RAS – точечные мутации в соответствующих генах. Наиболее частыми онкогенными мутациями генов всего семейства RAS являются мутации в 12 и 61 кодонах.
Мутации в гене KRAS в опухолях толстой кишки встречаются в 30-60% случаев. Наиболее часто мутации KRAS определяются в экзоне 2, кодонах 12 и 13. Однако описаны мутации в экзоне 3, кодоне 61, и в экзоне 4, кодонах 117 и 146. Мутации в гене NRAS (в идентичных экзонах и кодонах) при КРР составляют до 5%. Мутации в гене HRAS при аденокарциноме толстой кишки не описаны.
Мутации генов семейства RAS при злокачественных опухолях
(по базе данных COSMIC)
Колоректальный рак | Аденокарцинома | 0 | 42 | 5 |
Желчные пути | Аденокарцинома | 0 | 35 | 2 |
Мочевой пузырь | Уротелиальная карцинома | 12 | 4 | 2 |
Печень | Гепатоцеллюлярный рак | 0 | 4 | 4 |
Легкое | Крупноклеточный рак | 4 | 21 | 4 |
Аденокарцинома | 0 | 16 | 1 | |
Поджелудочная железа | Протоковая аденокарцинома | 0 | 69 | 1 |
Эндокринные опухоли | 0 | 1 | 75 | |
Кожа | Меланома | 1 | 2 | 20 |
Значение различных мутаций RAS
Как уже говорилось выше, при колоректальном раке почти 90% всех нарушений представляют собой точечные замены одного нуклеотида на другой во втором экзоне генов KRAS и NRAS, в последовательностях, кодирующих 12 и 13 аминокислоты. В норме в обеих позициях располагается глицин, единственная аминокислота, не имеющая боковой цепи.
Любое изменение этой последовательности приводит к замене глицина на разветвленные аминокислоты, что ведет к нарушению пространственной конформации протеина. В результате этого блокируется способность специальных белков инактивировать комплекс RAS с ГТФ путем гидролиза энергетической молекулы.
Сигнал начинает передаваться от активированного RAS к другим участникам каскада независимо от статуса EGFR.
Около 10% мутаций этой гена в колоректальных опухолях происходят в 3 и 4 экзонах, с одинаковой частотой в 61 и 146 кодонах и крайне редко – в 117 кодоне.
Мутации, затрагивающие 61 кодон, нарушают водородные связи между RAS и белками-инактиваторами, приводя к тому же эффекту, что и при нарушениях в 12 и 13 кодонах гена.
Мутации 146 кодона не сопровождаются существенными изменениями активности протеина.
Тем не менее, эти мутации оказывают свое негативное воздействие в результате накопления дефектного белка на фоне аллельного дисбаланса – увеличения копийности мутантного гена или перехода его в гомозиготное состояние, что весьма характерно для опухолей с мутациями генов семейства RAS.
Возрастающая роль сигнального пути RAS в индивидуализированной терапии мКРР
Самым известным биомаркером в таргетной анти-EGFR терапии пациентов c мКРР является статус мутаций кодонов 12 и 13 гена KRAS.
Доказано, что активация KRAS за счет мутации сводит на нет эффект ингибирования EGFR моноклональными антителами.
Таким образом, наличие мутантных аллелей гена KRAS является независимым предсказательным маркером эффективности терапии ингибиторами EGFR. Поэтому панитумумаб и цетуксимаб назначают только больным мКРР с диким типом гена KRAS.
Влияние дополнительных мутаций гена KRAS и новых мутаций гена NRAS, а также мутаций гена BRAF на эффективность таргетной терапии ингибиторами EGFR изучалось в исследованиях с панитумумабом и цетуксимабом пациентов мКРР:
- Анализ мутаций генов KRAS/NRAS и мутации гена BRAF в исследовании 3 фазы PRIME: комбинации панитумумаб+FOLFOX4 в сравнении с FOLFOX4 в 1-й линии терапии метастатического колоректального рака Oliner K, Douillard JY, Siena S, et al. Analysis of KRAS/NRAS and BRAF mutations in the phase III PRIME study of panitumumab (pmab) plus FOLFOX versus FOLFOX as first-line treatment (tx) for metastatic colorectal cancer (mCRC). ASCO 2013 (poster discussion): 3511
- Анализ мутаций генов RAS/RAF в исследовании 2 фазы PEAK: комбинации панитумумаба с mFOLFOX6 в сравнении с бевацизумабом в комбинации с mFOLFOX6 в 1-й линии терапии пациентов с метастатическим колоректальным раком с WTKRAS Schwartzberg LS, Rivera F, Karthaus M, et al. PEAK (study 20070509): A randomized phase II study of mFOLFOX6 with either panitumumab (pmab) or bevacizumab (bev) as first-line (tx) in patients (pts) with unresectable wild type (WT) KRAS metastatic colorectal cancer (mCRC). J Clin Oncol 2013; 30 (Suppl 34): 446
- Анализ влияния мутаций генов семейства RAS (2 экзона KRAS и других RAS-мутаций) в исследовании CRYSTAL: комбинации цетукпсимаба с FOLFIRI в сравнении с FOLFIRI в 1-й линии терапии пациентов с метастатическим колоректальным раком на выживаемость пациентов без прогрессии и общую выживаемость Van Cutsem et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 2015 Mar 1; 33(7): 692-700
Все исследования показали, что, несмотря на то, что индивидуализация терапии антителами по статусу генов семейства RAS предусматривает сужение круга пациентов (примерно 50/50 вместо 60/40 при отборе только лишь по статусу 2 экзона гена KRAS), пациенты с диким типом генов KRAS и NRAS в опухоли получат максимальную пользу от терапии антителами в комбинации со стандартной химиотерапией, по сравнению с пациентами без мутаций гена KRAS во 2 экзоне. Пока нет достаточных доказательств негативного влияния мутаций генов BRAF, PI3K, PTEN и других участников сигнального пути RAS-RAF-MEK-ERK-МАРК по результатам крупных проспективных рандомизированных исследований, однако не исключено, что появление таких исследований вновь существенно изменит наши представления о группе пациентов, для которых применение анти-EGFR антител окажется наиболее выгодным.
В связи с этим целью программы является максимально широкое внедрение генетического тестирования при колоректальном раке в ежедневную практику онкологов, как одного из важнейших условий проведения современной эффективной терапии у целевой группы пациентов.
Список литературы:
- Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell 1995; vol.80, no.2, pp.213-223.
- Carpenterand G, Cohen S. Epidermal growth factor. J Biol Chem, 1990; vol.265, no.14, pp.7709-7712.
- Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nature Rev Molecular Cell Biol 2006; vol.7, no.7, pp.505-516.
- Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature 1993; 366: 643-654.
- Vakiani E, Solit DB. KRAS and BRAF: drug targets and predictive biomarkers. J Pathol 2011; 223: 219-229.
- Edkins S, O’Meara S, Parker A, et al. Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther 2006; 5: 928-932.
- Janakiraman M, Vakiani E, Zeng Z, et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res 2010; 70: 5901-5911.
- Soh J, Okumura N, Lockwood WW, et al. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One. 2009, 14, no.4(10). P.7464.
Войти
в базу данных
Для того, чтобы отправить материал на диагностику, вы должны быть зарегистрированным пользователем. Если у вас уже есть логин и пароль, то повторная регистрация не требуется.
Регистрация
в программе
Если вы новый пользователь, пожалуйста, пройдите процедуру регистрации.
Мутации
Автор статьи — Л.В. Окольнова.
Сразу на ум приходят Люди Х… или Человек — Паук …
Но это в кино, в биологии тоже так, но немного более научно, менее фантастично и более обыденно.
Мута́ция (в переводе — изменение) — устойчивое, передающееся по наследству изменение ДНК, происходящее под влиянием внешних или внутренних изменений.
Мутагенез — процесс появления мутаций.
Обыденность в том, что эти изменения (мутации) происходят в природе и у человека постоянно, почти каждодневно.
В первую очередь, мутации подразделяются на соматические — возникают в клетках тела, и генеративные — появляются только в гаметах.
Соматические мутации | Генеративные мутации |
Не всегда передаются при половом размножении.Передаются при вегетативном (бесполом размножении). | Передаются по наследству. |
Разберем сначала виды генеративных мутаций.
Генные мутации
Что такое ген? Это участок ДНК (т.е. несколько нуклеотидов), соответственно, это и участок РНК, и участок белка, и какой-либо признак организма.
Т.е. генная мутация — это выпадение, замена, вставка, удвоение, изменение последовательности участков ДНК.
Вообще, это не всегда ведет к болезни. Например, при удвоении ДНК случаются такие “ошибки”. Но они возникают редко, это очень малый процент от всего количества, поэтому они незначительны, что практически не влияют на организм.
Бывают и серьезные мутагенезы:- серповидно-клеточная анемия у человека;- фенилкетонурия — нарушение обмена веществ, вызывающее довольно серьезные нарушения умственного развития- гемофилия
— гигантизм у растений
Геномные мутации
Вот классическое определение термина “геном”:
Геном—
— совокупность наследственного материала, заключенного в клетке организма;- геном человека и геномы всех остальных клеточных форм жизни, построены из ДНК;
— совокупность генетического материала гаплоидного набора хромосом данного вида в парах нуклеотидов ДНК на гаплоидный геном.
Для понимания сути мы очень сильно упростим, получится такое определение:
Геном — это количество хромосом
Геномные мутации — изменение числа хромосом организма. В основном, их причина — нестандартное расхождение хромосом в процессе деления.
— синдром Дауна — в норме у человека 46 хромосом (23 пары), однако при этой мутации образуются 47 хромосом
рис. синдром Дауна
— полиплойдия у растений (для растений это вообще норма — большинство культурный растений — полиплойдные мутанты)
Хромосомные мутации — деформации самих хромосом.
Примеры (некоторые перестройки такого рода есть у большинства людей и вообще никак не отражаются ни внешне, ни на здоровье, но есть и неприятные мутации):- синдром кошачьего крика у ребенка- задержка в развитии
и т.д.
Цитоплазматические мутации — мутации в ДНК митохондрий и хлоропластов.
Есть 2 органеллы со своими собственными ДНК (кольцевыми, в то время как в ядре — двойная спираль) — митохондрия и растительные пластиды.
Соответственно, есть мутации, вызванные изменениями именно в этих структурах.
Есть интересная особенность — этот вид мутации передается только женским полом, т.к. при образовании зиготы остаются только материнские митохондрии, а “мужские” отваливаются с хвостом при оплодотворении.
Примеры:- у человека — определенная форма сахарного диабета, туннельное зрение;
— у растений — пестролистность.
Соматические мутации
Это все описанные выше виды, но возникают они в клетках тела ( в соматических клетках).
Мутантных клеток обычно намного меньше, чем нормальных, и они подавляются здоровыми клетками. (Если не подавляются, то организм перерождаться или болеть).
Примеры:- у дрозофилы глаз красный, но может иметь белые фасеты
— у растения это может быть целый побег, отличающийся от других (И.В. Мичурин таким образом выводил новые сорта яблок).
— раковые клетки у человека
Примеры вопросов ЕГЭ:
Синдром Дауна является результатом мутации
1))геномной;
2) цитоплазматической;
3)хромосомной;
4) рецессивной.
Ответ: 1.
Генные мутации связаны с изменением
А) числа хромосом в клетках;
Б) структуры хромосом;
B) последовательности генов в аутосоме;
Г) нуклеогидов на участке ДНК.
Ответ: Г.
Мутации, связанные с обменом участками негомологичных хромосом, относят к
А) хромосомным;
Б) геномным;
В) точковым;
Г) генным.
Ответ: А.
Животное, в потомстве которого может появиться признак, обусловленный соматической мутацией
А) гидра
Б) волк
В) еж
Г) выдра
Ответ: А.
Виды мутаций классификация, мутагенные факторы (Таблица, схема)
Мутации — это внезапные, естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению признаков организма. Основы учения о мутациях заложены Г. де Фризом в 1901г. и оформлены затем в мутационную теорию.
Мутации характеризуются рядом свойств:
— возникают внезапно, скачкообразно, без всяких переходных форм;
— мутации — изменения качественные и, в отличие от ненаследственных изменений, не образуют непрерывных рядов и не группируются вокруг среднего значения;
— возникают ненаправленно — под влиянием одного и того же мутагенного фактора может мутировать любая часть структуры, несущей генетическую информацию, приводя тем самым к изменению самых разнообразных признаков;
— сходные мутации могут возникать неоднократно;
— мутации передаются из поколения в поколение.
Мутационная изменчивость — тип наследственной изменчивости, обусловленной появлением различных изменений в структуре генов, хромосом или генома. Фенотипически мутации проявляются только тогда, когда становятся гомозиготными.
Мутагенные факторы
Вид фактора | Определение | Мутагенные факторы |
ФИЗИЧЕСКИЕ | Физические мутагены составляют высокоэнергетичные частицы крайне малой величины, из-за чего они обладают высокой способностью глубоко проникать в ткани и вызывать молекулярные нарушения. | — ионизирующее излучение;— рентгеновские лучи;— УФО;— α; —β; —γ — лучи;— температура и другие. |
ХИМИЧЕСКИЕ | Химические мутагены должны обладать следующими свойствами: 1 — высокой проникающей способностью; 2 — свойством изменять коллоидное состояние хромосом и 3 — определенным действием на изменение гена или хромосомы. | Делятся на 9 классов:1 — алкилирующие соединения;2 — пероксиды;3 — альдегиды;4 — азотистая кислота;5 — соли тяжелых металлов;6 — гидроксиламины;7 — антиметаболиты, в том числе аналоги оснований ДНК;8 — красители, обладающие основными свойствами;9 — ряддр. веществ, преимущественно ароматического ряда (канцерогены, алкалоиды, некоторые лекарственные вещества, гербициды, инсектициды и др.) |
БИОЛОГИЧЕСКИЕ | Биологические мутагены — это, главным образом, вирусы, вызывающие наследственные изменения генетического материала у прокариот и эукариот. | — Вирусы— Токсины плесневых грибов и бактерий |
Таблица виды мутаций, классификация
Виды мутаций, классификация | Характеристика, примеры, описание |
Генные | Генная, или точечная, мутация происходит в одиночном локусе хромосомы, чаще всего путем делеции, добавления или замещения нуклеотидного основания. Примеры: серповидноклеточная анемия, фенилкетонурия, кистозный фиброз.1. Генные дупликации — удвоение пары или нескольких пар нуклеотидов (удвоение пары Г—Ц).2. Генные инсерции — вставка пары или нескольких пар нуклеотидов (вставка пары Г—Ц между А—Т и Т—А).3. Генные делеции — выпадение нуклеотидов (выпадение комплементарной пары Т—А между А—Т и Г—Ц).4. Генные инверсии — перестановка фрагмента гена (во фрагменте исходная последовательность нуклеотидов Т—А, Г—Ц заменяется на обратную Г—Ц, Т—А).5. Замены нуклеотидов — замена пары нуклеотидов на другую; при этом общее число нуклеотидов не меняется (замена Т—А на Ц—Г). Один из наиболее частых типов мутаций. |
Хромосомные | Изменением структуры хромосомы считается изменение значительной ее части. Например, одна из форм лейкемии связана с транслокацией части 8-й хромосомы на 14-ю. В эти изменения могут быть вовлечены как участки одной хромосомы, так и участки разных, негомологичных хромосом, поэтому хромосомные мутации (перестройки) подразделяются на внутри- и межхромосомные.А. Внутрихромосомные мутации1. Хромосомные дупликации — удвоение участка хромосомы.2. Хромосомные делеции — утрата хромосомой какого-либо участка.3. Хромосомные инверсии — разрыв хромосомы, переворачивание оторвавшегося участка на 180° и встраивание его на прежнее место.Б. Межхромосомные мутации1. Транслокация — обмен участками между негомологичными хромосомами (в мейозе).2. Транспозиция — включение участка хромосомы в другую, негомологичную хромосому без взаимного обмена. |
Геномные | Геномные мутации — изменение числа хромосом. Они могут быть вызваны нерасхождением хромосом при мейозе, что приводит к появлению у гамет нового набора хромосом. Геномные мутанты могут быть представлены гаплоидами (с вдвое меньшим числом хромосом), анеуплоидами (с лишней или недостающей хромосомой), полиплоидами (с кратным увеличением наборов хромосом).Анеуплоидия (обычно потеря или приобретение одной хромосомы) возникает в результате нерасхождения хромосом в анафазе мейоза. Наиболее известными примерами являются синдром Дауна (лишняя 21-я хромосома), синдром Кляйнфельтера (мужчины с лишней Х-хромосомой) и синдром Тернера (женщины без второй Х-хромосомы).Полиплоидия (наличие дополнительных полных наборов хромосом) возникает чаще всего, когда одна или обе сливающиеся гаметы диплоидны при оплодотворении формируется полиплоид. У животных это встречается редко, но среди растений есть много важных примеров полиплоидии; в частности, бананы — триплоиды, тетраплоидные томаты крупнее и содержат больше витамина С.Гаплоидия — уменьшение числа хромосом вдвое. Такой организм (гаплоид) имеет в соматических клетках гаплоидный набор хромосом. Поскольку он имеет лишь по одной хромосоме из каждой гомологичной пары, то в его фенотипе проявляются все имеющиеся рецессивные аллели. |
Рецессивные | Большинство мутаций рецессивно, и проявиться они могут только в гомозиготном состоянии. Вероятность такого события мала, поэтому рецессивные мутации долгое время накапливаются в популяции в скрытом виде. |
Доминантные | Доминантные мутации проявляются сразу и подвергаются действию естественного отбора (полезные сохраняются, вредные убираются). |
Промежуточные | — |
Гипоморфные | Гипоморфные мутации — группа мутаций по характеру их проявления. Действуют в том же направлении, что и нормальный аллель, но дают несколько ослабленный эффект. Например, у дрозофилы окраска глаз при мутации значительно бледнее. |
Аморфные | Группа мутаций по характеру их проявления в фенотипе. Неактивны в отношении типичного эффекта нормального аллеля. Например, ген альбинизма полностью тормозит образование пигмента у животных или хлорофилла у растений. |
Антиморфные | Это группа мутаций по характеру их проявления в фенотипе. Оказывают действие, противоположное действию нормального аллеля. Так, у кукурузы исходный аллель дает пурпурную окраску семян, а мутантный — вызывает образование бурого пигмента. |
Неоморфные | Это группа мутаций, нетипичных по характеру их проявления в фенотипе. Их действие совершенно отлично от действия исходного нормального аллеля. |
Спонтанные мутации | Возникают в естественных условиях обитания организма. Считается, что на их появление не оказывается никакого воздействия извне, они всегда неожиданны и непредсказуемы и действительные причины таких мутаций во многом остаются неизвестными. |
Индуцированные мутации | Возникают под воздействием внешних факторов. Такие факторы называются мутагенными, или мутагенами. В зависимости от природы их делят на физические, химические и биологические. |
Генеративные | Генеративные мутации возникают в первичных половых клетках или в гаметах, передаются по наследству при половом размножении (например, гемофилия, синдром Дауна у человека). |
Соматические | Соматические мутации возникают в любых клетках, кроме гамет. Они затрагивают часть организма (например, разная окраска лепестков в одном цветке, разный цвет глаз у человека и животных). |
Биохимические | Мутации, изменяющие или полностью блокирующие синтез определенных веществ в организме. Наиболее хорошо они изучены у микроорганизмов. |
Физиологические | Мутации вызывают изменения физиологических процессов. Типичный пример – мутация, вызывающая у мышей «вальсирующие» движения. |
Морфологические | Связаны с изменением в строении органов, тканей или отдельных структур клетки. К ним относятся: коротконогость у крупного рогатого скота и овец; безглазость и бескрылость у насекомых; |
Летальные | Это мутация, вызывающая гибель содержащего её организма. Доминантная летальная мутация губительна для всех (как гомозигот, так и гетерозигот), а рецессивная летальная мутация — только для гомозигот. |
Вредные | Вредные мутации нередко понижают жизнеспособность или плодовитость. Могут быть полулетальными и летальными. |
Нейтральные | Нейтральные мутации никак не отражаются на жизнеспособности организма (цвет глаз, группа крови). |
Полезные | Полезные мутации – мутации, которые приводят к повышенной устойчивости организма (устойчивость тараканов к ядохимикатам), в конечном итоге, повышают приспособленность особей. |
Значение мутации
Мутации, так же как и рекомбинации, дают новые состояния генотипов. Однако, в отличие от последних, мутации приводят к образованию новых аллелей и даже генов.
Следовательно, они являются причиной любого качественного изменения генофонда, что, согласно теории эволюции, определяет микро- и макроэволюционные процессы.
Для хозяйственной деятельности человека мутации (особенно индуцированные) важны в качестве метода, позволяющего получить разнообразие племенного материала с последующим отбором наиболее ценных форм.
_______________
Источник информации:
1. Биология человека в диаграммах / В.Р. Пикеринг — 2003.
2. Биология: Справочник для старшеклассников и поступающих в вузы/ Т.Л.Богданова —М.: 2012.
3. Весь курс школьной программы в схемах и таблицах: биология /-СПб.:Тригон,2007.
Мутации — Биология Егэ
Наследственная (генотипическая) изменчивость проявляется в изменении генотипа особи, поэтому передается при половом размножении потомкам.
Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достаточно длительно существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с уже имеющимися вариантами генов.
Виды наследственной изменчивости:
- комбинативная: обусловленная перекомбинированием генов в результате мейоза и оплодотворения;
- мутационная: обусловленная возникновением мутаций.
Комбинативная изменчивость
Комбинативной называют изменчивость, в основе которой лежит образованиерекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.
В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости в ходе полового размножения эукариот служат три процесса:
- Независимое расхождение гомологичных хромосом в анафазе первого деления мейоза. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.
- Взаимный обмен участками гомологичных хромосом, или кроссинговер, в профазе первого деления мейоза. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
- Случайное сочетание гамет при оплодотворении.
Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.
Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако она, как правило, не порождает стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов.
Стабильные, долгоживущие изменения возникают в результате мутаций.
Мутационная изменчивость
Мутация — это устойчивое и ненаправленное изменение в геноме.
Мутация сохраняется неограниченно долго в ряду поколений.
Значение мутаций в эволюции огромно — благодаря им возникают новые варианты генов. Говорят, что мутации — это сырой материал эволюции. Мутации носят индивидуальный (каждая мутация в отдельной молекуле ДНК возникает случайно) и ненаправленный характер.
Мутации могут как приводить, так и не приводить к изменению признаков и свойств организма.
Мутации возникают постоянно на протяжении всего онтогенеза человека. Чем на более раннем этапе развития организма возникнет конкретная мутация, тем большее влияние она может оказать на развитие организма (рис. 1).
Рис. 1. Влияние мутаций в разные периоды онтогенеза
Мутации делятся на:
- нейтральные;
- вредные;
- полезные.
Современные генетики считают, что большинство вновь возникающих мутацийнейтральны, то есть никак не отражаются на приспособленности организма.
Нейтральные мутации происходят в межгенных участках — интронах (участках ДНК, не кодирующих белки); либо это синонимичные мутации в кодирующей части гена — мутации, которые приводят к возникновению кодона, обозначающего ту же аминокислоту (это возможно из-за вырожденности генетического кода).
Следующими по частоте являются вредные мутации. Вредоносное действие мутаций объясняется тем, что изменения касаются наследственных признаков, имеющих чаще всего адаптивное значение, т. е. признаков, полезных в данных условиях среды.
Лишь небольшая часть мутаций повышает приспособленность организма, то есть является полезной («ломать не строить»).
Однако вредность и полезность мутаций — понятия относительные, т. к. то, что полезно (вредно) в данных условиях, может оказать обратное действие при изменении условий среды. Именно поэтому мутации являются материалом для эволюции.
Мутагенез — процесс возникновения мутаций.
Мутации могут появиться как в соматических, так и в половых клетках (рис. 2).
Рис. 2. Результат мутаций
Соматические мутации | Генеративные мутации |
Не всегда передаются при половом размножении.Передаются при вегетативном (бесполом размножении). | Передаются по наследству. |
Не смотря на то, что мутации возникают постоянно, существует ряд факторов, так называемых мутагенов, увеличивающих вероятность появления мутаций.
Мутагены — факторы, увеличивающие вероятность появления мутаций.
Мутагенами могут быть:
- химические вещества (кислоты, щелочи и т. п.);
- температурные воздействия;
- УФ-излучение;
- радиация;
- вирусы.
Канцерогены — факторы, повышающие вероятность возникновения злокачественных новообразований (опухолей) в организме животных и человека.
По характеру изменения генома различают мутации:
- генные (точечные)
- хромосомные
- геномные
ГЕННЫЕ МУТАЦИИ
Генные, или точечные мутации — результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена.
Если такая мутация происходит в гене, это приводит к изменению последовательности иРНК. А изменение последовательности иРНК может привести к изменению последовательности аминокислот в полипептидной цепи. В результате синтезируется другой белок, а в организме изменяется какой-либо признак.
Это наиболее распространённый вид мутаций и важнейший источник наследственной изменчивости организмов.
Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене:
- дупликации — повторение участка гена,
- вставки — появление в последовательности лишней пары нуклеотидов,
- делеции —выпадение одной или более пар нуклеотидов,
- замены нуклеотидных пар — AT ->
Мутации генов гемостаза MTHFR – что это значит и что с этим делать
Мутация гена MTHFR является проблемой, связанной с плохим метилированием и продукцией ферментов. Мутации генов гемостаза MTHFR влияют на каждого человека по-разному. Иногда они приводят к едва заметным симптомам, а иногда приводят к серьезным, долговременным проблемам со здоровьем.
Хотя точный показатель распространенности все еще остается предметом дискуссий, считается, что 30%-50% всех людей могут иметь мутацию в гене MTHFR, который наследуется и передается от родителя к ребенку.
Как правило, это гетерозиготная мутация. Приблизительно от 14% до 20% процентов населения могут иметь более тяжелую мутацию MTHFR, которая более резко влияет на общее состояние здоровья.
Она называется гомозиготной мутацией.
Разница состоит в том, что гетерозигота – это мутация в одной аллели пары генов. То есть шанс ее проявления составляет 50%. А гомозигота – мутация в обеих аллелях пары генов, проявление в 100% случаев.
Мутация гена MTHFR была обнаружена во время завершения проекта генома человека. Исследователи поняли, что люди с этим типом наследственной мутации имели большую вероятность развития определенных заболеваний. К ним относятся: СДВГ, болезнь Альцгеймера, атеросклероз, аутоиммунные расстройства и аутизм.
Еще многое предстоит узнать о том, что означает этот тип мутации для людей, которые несут ее и продолжают передавать своим детям.
На сегодняшний день существуют десятки различных состояний здоровья, связанных с мутациями MTHFR. Но еще раз подчеркнем, что даже если вы являетесь носителем мутации – не факт, что у вас будут ее проявления. Мутация означает лишь повышение рисков.
Что такое мутация генов MTHFR
MTHFR — это ген, который обеспечивает организм инструкциями по производству определенного фермента, называемого метилентетрагидрофолатредуктаза . То есть MTHFR — сокращенное название этого фермента.
Есть две основные мутации MTHFR, на которых исследователи фокусируются чаще всего. Эти мутации часто называют «полиморфизмами» и влияют на гены, называемые MTHFR C677T и MTHFR A1298C.
Также эти мутации называют – мутациями фолатного цикла, потому что они показывают, как организм преобразует фолиевую кислоту в активную форму для наилучшего усвоения.
Соответственно, если у вас есть мутации генов гемостаза MTHFR, то ваш организм плохо усваивает фолиевую кислоту и другие витамины группы B, особенно В12. Что делать в этом случае – читайте далее.
Мутации могут происходить в разных местах этих генов и наследоваться только от одного или обоих родителей. Наличие одного мутантного аллеля связано с повышенным риском определенных проблем со здоровьем, но наличие двух увеличивает риск намного больше.
Мутация гена MTHFR может изменить способ, которым некоторые люди метаболизируют и преобразовывают важные питательные вещества из своего рациона в активные витамины, минералы и белки.
Генетические мутации также могут изменять уровни нейротрансмиттеров и гормонов.
В некоторых случаях, хотя и не во всех, изменения в работе этого фермента могут влиять на параметры здоровья, включая уровень холестерина, функцию мозга, пищеварение, эндокринные функции и многое другое.
Часть о мутациях генов гемостаза MTHFR впервые узнают после анализа причин замершей беременности
1. Потребляйте больше натурального фолата, витамина В6 и витамина В12
В случае с мутациями генов фолатного цикла важно употреблять много продуктов, богатых витаминами B6, B9 и B12.
Вы также можете принимать их в виде добавки. Однако, помните, что людям с мутациями MTHFR труднее переводить синтетическую форму фолиевой кислоты в биодоступную. Более того, прием обычной фолиевой кислоты может вызвать ухудшение симптомов.
Получение достаточного количества фолиевой кислоты особенно важно до и во время беременности. За три месяца до зачатия и в течение первого триместра беременности матери, которые получают достаточно фолиевой кислоты, снижают риск развития у детей различных проблем со здоровьем.
Людям с мутациями MTHFR критически важно получать биодоступные формы фолата в добавках, называемых L-метилфолатом или метильной формой витамина В9.
L-метилфолат сложнее упаковывать в форме капсул, поэтому вы, возможно, не сможете получать очень высокие дозы в типичных поливитаминах или добавках. Поэтому рекомендуется принимать моно-добавки под называнием 5-MTHF.
Now Foods, Метилфолат, 5000 мкг, 50 вегетарианских капсул
Thorne Research, 5-МТГФ, 5 мг, 60 капсул
Если у вас обнаружена мутация MTHFR в форме гомозиготы, то метильные комплексы фолиевой кислоты вам необходимо пропивать постоянно курсами — минимум 3 раза в год.
Наличие большего количества фолиевой кислоты в вашем рационе означает, что вы лучше способны создавать активную форму 5-MTHF. Некоторые из лучших продуктов с высоким содержанием фолиевой кислоты включают в себя:
- Фасоль и чечевица
- Листовые зеленые овощи, такие как сырой шпинат
- Спаржа
- Ромэн
- Брокколи
- Авокадо
- Яркие фрукты, такие как апельсины и манго
Генные мутации
☰
Виды генных мутаций:
Замена азотистых оснований
Сдвиг рамки считывания
Инверсия в пределах гена
Генные мутации возникаю чаще, чем хромосомные и геномные, но менее значительно меняют структуру ДНК, в основном касаются только химической структуры отдельно взятого гена.
Представляют собой замену, удаление или вставку нуклеотида, иногда нескольких.
Также к генным мутациям относятся транслокации (перенос), дупликации (повторение), инверсии (переворот на 180°) участков гена, но не хромосомы.
Генные мутации происходят при репликации ДНК, кроссинговере, возможны в остальные периоды клеточного цикла. Механизмы репарации не всегда устраняют мутации и повреждения ДНК. Кроме того сами могут служить источником генных мутаций. Например, при объединении концов разорванной хромосомы часто теряется несколько нуклеотидных пар.
Если системы репарации перестают нормально функционировать, то происходит быстрое накопление мутаций.
Если мутации возникают в генах, кодирующих ферменты репарации, то может нарушится работа одного или нескольких его механизмов, в результате чего количество мутаций сильно возрастет.
Однако иногда бывает обратный эффект, когда мутация генов ферментов репарации приводит к снижению частоты мутаций других генов.
Помимо первичных мутаций в клетках могут происходить и обратные, восстанавливающие исходный ген.
Большинство генных изменений, как и мутаций двух других видов, вредны. Появление мутаций, обусловливающих полезные признаки для определенных условий среды, происходит редко. Однако именно они делают возможным процесс эволюции.
Генные мутации затрагивают не генотип, а отдельные участки гена, что, в свою очередь, обуславливает появление нового варианта признака, т. е. аллели, а не нового признака как такового. Мутон — это элементарная единица мутационного процесса, способная приводить к появлению нового варианта признака.
Зачастую, для этого достаточно изменить одну пару нуклеотидов. С этой точки зрения мутон соответствует одной паре комплементарных нуклеотидов. С другой стороны, не все генные мутации являются мутонами с точки зрения последствий.
Если изменение нуклеотидной последовательности не влечет за собой изменения признака, то с функциональной точки зрения мутации не произошло.
Одной паре нуклеотидов соответствует и рекон — элементарная единица рекомбинации. При кроссинговере в случае нарушения рекомбинации происходит неравный обмен участками между конъюгирующими хромосомами.
В результате происходит вставка и выпадение нуклеотидных пар, что влечет сдвиг рамки считывания, в дальнейшем нарушение синтеза пептида с необходимыми свойствами.
Таким образом для искажения генетической информации достаточно одной лишней или потерянной пары нуклеотидов.
Частота спонтанных генных мутаций находится в пределах от 10-12 до 10-9 на каждый нуклеотид ДНК на каждое деление клетки. Для проведения исследований ученые подвергают клетки воздействию химических, физических и биологических мутагенов. Вызванные таким образом мутации, называются индуцированными, их частота выше.
Если происходит изменение только одного нуклеотида в ДНК, то такая мутация называется точечной. В случае мутаций по типу замены азотистых оснований одна комплементарная нуклеотидная пара молекулы ДНК заменяется в ряду циклов репликации на другую. Частота подобных происшествий составляет около 20% от общей массы всех генных мутаций.
Примером подобного является дезаминирование цитозина, в результате чего образуется урацил.
В ДНК образуется нуклеотидная пара Г-У, вместо Г-Ц. Если ошибка не будет репарирована ферментом ДНК-гликолазой, то при репликации произойдет следующее.
Цепи разойдутся, напротив гуанина будет установлен цитозин, а напротив урацила — аденин. Таким образом, одна из дочерних молекул ДНК будет содержать аномальную пару У-А.
При ее последующей репликации в одной из молекул напротив аденина будет установлен тимин. Т. е. в гене произойдет замена пары Г-Ц на А-Т.
Другим примером является дезаминирование метилированного цитозина, в результате которого образуется тимин. В последствии может возникнуть ген с парой Т-А вместо Ц-Г.
Могут быть и обратные замены: пара А-Т при определенных химических реакциях может заменяться на Ц-Г. Например, в процессе репликации к аденину может присоединиться бромурацил, который при следующей репликации присоединяет к себе гуанин. В следующем цикле гуанин свяжется с цитозином. Таким образом в гене пара А-Т заменится на Ц-Г.
Замена одного пиримидина на другой пиримидин или одного пурина на другой пурин называется транзицией. Пиримидинами являются цитозин, тимин, урацил. Пуринами — аденин и гуанин. Замена пурина на пиримидин или пиримидина на пурин называется трансверсией.
Точечная мутация может не привести ни к каким последствиям из-за вырожденности генетического кода, когда несколько кодонов-триплетов кодируют одну и ту же аминокислоту. Т. е.
в результате замены одного нуклеотида может образоваться другой кодон, но кодирующий ту же аминокислоту, что и старый. Такая замена нуклеотидов называется синонимической. Их частота около 25% от всех замен нуклеотидов.
Если же смысл кодона меняется, он начинает кодировать другую аминокислоту, то замена называется мисенс-мутацией. Их частота около 70%.
В случае мисенс-мутации при трансляции в пептид будет включена не та аминокислота, в результате чего его свойства изменятся.
От степени изменения свойств белка зависит степень изменения более сложных признаков организма. Например, при серповидно-клеточной анемии в белке заменена лишь одна аминокислота — глутамин на валин.
Если же глутамин заменяется на лизин, то свойства белка меняются не сильно, т. е. обе аминокислоты гидрофильны.
Точечная мутация может быть такой, что на месте кодирующего аминокислоту кодона возникает стоп-кодон (УАГ, УАА, УГА), прерывающий (терминирующий) трансляцию. Это нонсенс-мутации. Иногда бывают и обратные замены, когда на месте стоп-кодона возникает смысловой. При любой подобной генной мутации функциональный белок уже не может быть синтезирован.
Сдвиг рамки считывания
К генным относятся мутации обусловленные сдвигом рамки считывания, когда происходит изменение количества нуклеотидных пар в составе гена. Это может быть как выпадение, так и вставка одной или нескольких нуклеотидных пар в ДНК. Генных мутаций по типу сдвига рамки считывания больше всего. Наиболее часто они возникают в повторяющихся нуклеотидных последовательностях.
Вставка или выпадение нуклеотидных пар может произойти в следствие воздействия определенных химических веществ, которые деформируют двойную спираль ДНК.
Рентгеновское облучение может приводить к выпадению, т. е. делеции, участка с большим количеством пар нуклеотидов.
Вставки нередки при включении в нуклеотидную последовательность так называемых подвижных генетических элементов, которые могут менять свое положение.
К генным мутациям приводит неравный кроссинговер. Чаще всего он происходит в тех участках хромосом, где локализуются несколько копий одного и того же гена. При этом кроссинговер происходит так, что в одной хромосоме возникает делеция участка. Этот участок переносится на гомологичную хромосому, в которой возникает дупликация участка гена.
Если происходит делеция или вставка числа нуклеотидов не кратного трем, то рамка считывания сдвигается, и трансляция генетического кода зачастую обессмысливается. Кроме того, может возникнуть нонсенс-триплет.
Если количество вставленных или выпавших нуклеотидов кратно трем, то, можно сказать, сдвиг рамки считывания не происходит. Однако при трансляции таких генов в пептидную цепь будут включены лишние или утрачены значащие аминокислоты.
Инверсия в пределах гена
Если инверсия участка ДНК происходит внутри одного гена, то такую мутацию относят к генным. Инверсии более крупных участков относятся к хромосомным мутациям.
Инверсия происходит вследствие поворота участка ДНК на 180°. Часто это происходит при образовании петли в молекуле ДНК. При репликации в петле репликация идет в обратном направлении. Далее этот кусок сшивается с остальной нитью ДНК, но оказывается перевернутым наоборот.
Если инверсия случается в смысловом гене, то при синтезе пептида часть его аминокислот будет иметь обратную последовательность, что скажется на свойствах белка.